

 1

GSTAL
The Georgetown Stack Assembly Language

Bryan Crawley

Introduction

The Georgetown Stack Assembly Language (GSTAL) is derived from STAL, a stack assembly

language designed by Gerald Wildenberg of St. John Fisher College, Rochester, NY. [1]

The GSTAL virtual machine is a zero-address machine. The machine instructions do not include

memory addresses. They retrieve their operands from a central stack, and they push their results

onto the same stack. The machine’s memory architecture comprises code memory, data memory,

and three special-purpose registers.

Code Memory

Each code-memory location holds one GSTAL instruction. The first instruction of the current

GSTAL program resides at address zero, with addresses increasing consecutively for subsequent

instructions. The size of code memory is limited only by the size of the process in which the

GSTAL interpreter runs. That is, there is no inherent upper bound on code addresses.

Data Memory

Data memory is an array of 4-byte words, addressable by word and not by byte. The first word

resides at address zero, with addresses increasing consecutively for subsequent words. Each

memory word can contain either an integer or a floating-point number. GSTAL instructions treat

data memory as a stack. The top-of-stack pointer is in the special register called tos. (See

Special Registers below.) Each instruction fetches its operands by popping them from the stack.

The result of the operation, if any, is pushed back onto the stack. When a GSTAL program

begins running, the stack is initially empty.

Some of the GSTAL instructions violate the stack abstraction by addressing data memory words

other than the top of the stack. These instructions make it possible to store and retrieve variables.

See the following pages for complete descriptions of the GSTAL instructions.

The size of data memory is limited only by the size of the process in which the GSTAL

interpreter runs. That is, there is no inherent upper bound on data addresses. However, any

address reference less than zero or greater than tos (see Special Registers below) is erroneous

and results in a run-time error.

 2

Special Registers

The GSTAL virtual machine has three special registers called tos, pc, and act. The registers

cannot be addressed directly. Rather, their values are altered as side effects of the various

GSTAL instructions. The operational semantics on the following pages describe how the

registers are manipulated by each instruction. A description of each register follows.

tos The address in data memory of the current top entry of the stack. Any address reference

greater than tos or less than zero is invalid and will result in an execution error. When

the stack is empty, tos is undefined.

pc The program counter. This is the address in code memory of the current GSTAL

instruction. The initial value is zero.

act The base address in data memory of the current activation frame. This register is relevant

only to subroutine calls, returns, and parameter passing.

Input and Output

All GSTAL input comes from the standard input. All output goes to the standard output. The

input instructions can read integers and floating-point numbers. The output instructions can write

integers, floating-point numbers in exponential form, and individual characters.

Comments and Blank Lines

You can append a comment to the right-hand side of any GSTAL instruction. A comment

consists of a semicolon (;) followed by any text extending to the right-hand end of the line.

GSTAL does not permit blank lines or lines that contain only a comment with no instruction.

Every line of a GSTAL program must contain a GSTAL instruction.

The GSTAL Interpreter

The GSTAL interpreter runs any valid GSTAL program. Before it executes the GSTAL code, it

scans the entire program to verify the syntax. If it finds any syntax errors, it reports the errors

and aborts the run. If it finds no syntax errors then it runs the program. The GSTAL program

terminates under any of these three conditions:

 A HLT instruction is executed.

 The physically last statement of the program is executed, and it is neither a JMP, JPF, nor

RET that transfers control to another place in the program. In other words, the program halts

if it “falls through the bottom” without executing a HLT instruction.

 An execution error occurs in the GSTAL code. The interpreter reports all execution errors

with appropriate error messages.

 3

Use this syntax to run a GSTAL program at the command-line prompt:

gstal <filename>

where <filename> is the name of a text file that contains a GSTAL program. For example, if

you have a GSTAL program in a file called proj1.g, then do this:

gstal proj1.g

Interpreter Options

The interpreter includes two options that are helpful in debugging GSTAL programs. The -d

option runs the program and produces a stack dump if an execution error occurs. The stack dump

is written to a text file called stackdump. For example:

gstal -d proj1.g

The -l (lowercase “L”) option does not run the program, but instead writes a numbered listing

of the program to the standard output. This helps you identify line numbers which may be the

targets of JMP, JPF, or CAL instructions. For example:

gstal -l proj1.g

If you want to save the numbered listing in a file, then redirect the standard output to a text file

of your choosing. For example, to write the numbered listing to a file called proj1.listing,

do this:

gstal -l proj1.g > proj1.listing

References

[1] 1990. Wildenberg, Gerald. Using a Stack Assembler Language in a Compiler Course,

SIGCSE Bulletin 22, No. 4: p. 43 (December).

 4

Integer Arithmetic

Op Code Description Semantics Argument

ADI Addition b = pop();

 a = pop();

 push(a+b);

SBI Subtraction b = pop();

 a = pop();

 push(a-b);

MLI Multiplication b = pop();

 a = pop();

 push(a*b);

DVI Division b = pop();

 a = pop();

 push(a/b);

NGI Negation a = pop();

 push(-a);

 5

Floating-Point Arithmetic

Op Code Description Semantics Argument

ADF Addition y = pop();

 x = pop();

 push(x+y);

SBF Subtraction y = pop();

 x = pop();

 push(x-y);

MLF Multiplication y = pop();

 x = pop();

 push(x*y);

DVF Division y = pop();

 x = pop();

 push(x/y);

NGF Negation x = pop();

 push(-x);

 6

Integer Relational Operations

Op Code Description Semantics Argument

EQI Equal To b = pop();

 a = pop();

 push(a==b);

NEI Not Equal To b = pop();

 a = pop();

 push(a!=b);

LTI Less Than b = pop();

 a = pop();

 push(a<b);

LEI Less Than Or Equal To b = pop();

 a = pop();

 push(a<=b);

GTI Greater Than b = pop();

 a = pop();

 push(a>b);

GEI Greater Than Or Equal To b = pop();

 a = pop();

 push(a>=b);

 7

Floating-Point Relational Operations

Op Code Description Semantics Argument

EQF Equal To y = pop();

 x = pop();

 push(x==y);

NEF Not Equal To y = pop();

 x = pop();

 push(x!=y);

LTF Less Than y = pop();

 x = pop();

 push(x<y);

LEF Less Than Or Equal To y = pop();

 x = pop();

 push(x<=y);

GTF Greater Than y = pop();

 x = pop();

 push(x>y);

GEF Greater Than Or Equal To y = pop();

 x = pop();

 push(x>=y);

 8

Data Type Conversion

Op Code Description Semantics Argument

FTI Floating-Point to Integer x = pop();

 push((int) x);

ITF Integer to Floating-Point a = pop();

 push((float) a);

 9

Input and Output

Op Code Description Semantics Argument

PTI Print Integer a = pop();

 printf("%d",a);

PTF Print Floating-Point x = pop();

 printf("%e",x);

PTC Print Character a = pop();

 printf("%c",a);

PTL Print Newline Character printf("");

INI Input Integer scanf("%d", &a);

 push(a);

INF Input Floating-Point scanf("%f", &x);

 push(x);

 10

Stack Manipulation

Op Code Description Semantics Argument

LLI <arg> Load Literal Integer push(arg); <arg> is an integer.

LLF <arg> Load Literal Floating-Point push(arg); <arg> is a floating-

 point number.

ISP <arg> Increment Stack Pointer tos = tos + arg; <arg> is a non-

 negative integer.

DSP <arg> Decrement Stack Pointer tos = tos - arg; <arg> is a non-

 negative integer.

STO Store b = pop();

 a = pop();

 datamem[a] = b;

STM Store Memory b = pop();

 a = pop();

 datamem[b] = a;

 push(b);

LOD Load a = pop();

 push(datamem[a]);

 11

Flow Control

Op Code Description Semantics Argument

LAA <arg> Load Absolute Address push(arg); <arg> is a non-

 negative integer.

LRA <arg> Load Relative Address push(act+arg); <arg> is a non-

 negative integer.

JMP <arg> Unconditional Jump pc = arg; <arg> is a non-

 negative integer.

JPF <arg> Jump If False a = pop(); <arg> is a non-

 if (a==0) negative integer;

 pc = arg;

PAR <arg> Load Parameter Address push(act-arg); <arg> is a non-

 negative integer.

CAL <arg> Call Subroutine push(act); <arg> is a non-

 act = tos; negative integer.

 push(pc);

 pc = arg;

RET Return From Subroutine pc = datamem[act+1] + 1;

 tos = act-1;

 act = datamem[act];

NOP No Operation <do nothing>

HLT Halt <execution terminates>

