SLIC
A Simple Language for an Instructional Compiler
Bryan Crawley

This document provides informal specifications for SLIC, the source language for our compiler
project. Design of SLIC is an ongoing process. We may make modifications and additions. I will
notify you of any changes that affect the implementation of your compiler. Because these are
informal specifications, they may contain ambiguities that require clarification in class.

There are two sample programs attached. They illustrate many of the rules of SLIC syntax and
semantics.

SLIC is an imperative, procedural language with strong similarities to Pascal, C, Basic, and
many other common high-level languages. It is designed to maximize the ease of compilation. It
is not intended to be a language for production programming.

SLIC documentation v.1.1
March 24, 2011



General Rules of Syntax

e A program will consist only of a main program for now. We will add subroutines later in the
semester if time permits. The main program begins with:

main;
and ends with:
end main;

e Each statement ends with a semicolon. Notice that main and end main are considered state-
ments. You may put as many statements on a line as you wish, or you may begin a new line
anywhere there is a space or a punctuation mark. Wherever there is a punctuation mark, there
can be spaces surrounding it. Wherever there is one space, there can be multiple spaces.

e Reserved words are not case-sensitive. They can be written in either upper case or lower case
or any mixture of upper and lower case. Generally, the keywords of the statements—Ilike
main, end, if, while, and so on—are reserved.

e Variable names and other identifiers defined by the programmer are case-sensitive.

e A routine is divided into two sections, the data section for declaring variables and the algo-
rithm section for the body of the routine. Each section is identified by the corresponding re-
served word followed by a colon. See the sample programs. The data section comes first,
then the algorithm section.

main;
data:
...declarations...
algorithm:
...body...

end main;

e A comment begins with the pound sign (#) and extends rightward to the end of the line.



Terminating Execution
e The exit statement terminates execution. The syntax is:
exit;

e An exit statement can appear anywhere in the algorithm section of the program. A program
can contain any number of exit statements.

e A program will terminate execution if it “falls through the bottom” of the main routine by
reaching end main without having executed an exit statement.



Variables, Data Types, and Declarations

e There are two data types called integer and real. The syntax for constants is the same as in
Pascal.

e Variable names and all other identifiers are alphanumeric and begin with a letter. They are
case-sensitive. All variables, both scalars and arrays, must be declared explicitly.

e A variable declaration statement is a data type name followed by a colon and a comma-
delimited list of variable names. For example:

real: X, area, Length, ROOT;

¢ One-dimensional arrays are permitted. An array is declared with a variable name followed by
a bracketed non-negative integer constant. The integer indicates the number of elements in
the array. Array indices are integers, beginning with zero as in C/C++. This declaration, for
example, creates an array of 20 integers, indexed 0 through 19:

integer: LIST[20];

e One declaration statement may declare any number of scalar and array variables. The data
section of a routine may contain any number of declaration statements.

e There is no Boolean data type. Boolean operations are handled in a manner similar to C. Any
numeric value may be used in a Boolean context. A zero value is a Boolean false; a non-zero
value is a Boolean true. The relational and Boolean operators produce an integer zero to rep-
resent false and an integer one to represent true.



Expressions

e An expression may contain integer and real constants, integer and real variables, operators,
and parentheses. Variables may be either scalars or array references. An array reference con-
sists of the array name followed by a bracketed subscript. The subscript must be an integer
expression whose value is within the range of subscripts allowed for the array, according to
its declaration.

e The four standard arithmetic operators are provided: addition (+), subtraction (-), multiplica-
tion (*), and division (/). Both binary and unary minus are available.

e A division (/) operator with two integer operands produces an integer result. Otherwise, divi-
sion produces a real result. Similarly for the other arithmetic operators—if both operands are
integers, then the result is an integer. Otherwise, the result is real.

e The six standard relational operators are provided: less than (<), less than or equal to (<=),
greater than (>), greater than or equal to (>=), equal to (=), and not equal to (<>). The result
of these operations is an integer zero to represent a Boolean false and an integer one to repre-
sent a Boolean true.

e The three standard Boolean operators are provided: “and” (&), “or” (|), and “not” (~). Any
numeric value may be used as a Boolean operand. A zero value is a Boolean false; a non-
zero value is a Boolean true. The result of a Boolean operation is an integer zero to represent
a Boolean false and an integer one to represent a Boolean true.

e The priority of operators is listed below. The highest priority is at the top of the list. Paren-
theses are available to override the priority.

1. unary minus (-)

2. %/

3.+, -

4, < <=,> >= = <>
5. &, |,~



Assignment Statements

e The syntax of the assignment statement is:
varref := expression,

e A varref'is any valid variable reference, including both scalars and array references. An array
reference consists of the array name followed by a bracketed index. The index must be an in-
teger expression whose value is within the range of indices allowed for the array, according
to its declaration.

e The varref is the target of the assignment. The expression is the source of the value that is
assigned.

e Mixed-mode assignments are permitted. That is, an integer value can be assigned to a real
variable, and a real value can be assigned to an integer variable. Each case will coerce the
value to the date type of the variable to which it is assigned. When a real value is assigned to
an integer variable, its fractional part is truncated.



Repetition Control Structures

e The syntax for conditional loops is:

while expression;
...body...
end while;

e The while statement is controlled by a Boolean expression. Notice that while and end while
are both considered statements and must be terminated with semicolons.

e The expression is evaluated before each loop iteration. If it is a Boolean true, the body of the
loop is performed. If it is a Boolean false, the loop terminates. Any arithmetic expression
may be used in this context. A zero value is a Boolean false; a non-zero value is a Boolean
true.

e The syntax for counting loops that count upward is:

counting variable upward startexpr to endexpr;
...body...
end counting;

e Notice that counting/upward and end counting are both considered statements and must be
terminated with semicolons.

e The variable is a scalar integer variable that controls the loop. The expressions startexpr and
endexpr are integer expressions that provide the starting and ending values of the counting
range. The variable is initialized to the value of startexpr before the loop begins. Before each
loop iteration, the variable is compared to endexpr. If it is less than or equal to endexpr, the
body of the loop is performed. If it is greater than endexpr, the loop terminates. The variable
is incremented by 1 after each loop iteration.

e The syntax for counting loops that count downward is:

counting variable downward startexpr to endexpr;
...body...
end counting;

e Notice that counting/downward and end counting are both considered statements and must
be terminated with semicolons.

e The variable is a scalar integer variable that controls the loop. The expressions startexpr and
endexpr are integer expressions that provide the starting and ending values of the counting
range. The variable is initialized to the value of startexpr before the loop begins. Before each
loop iteration, the variable is compared to endexpr. If it is greater than or equal to endexpr,
the body of the loop is performed. If it is less than endexpr, the loop terminates. The variable
is decremented by 1 after each loop iteration.

7



Selection Control Structures

The syntax used for selection is:

if expression;
...body...
end if;

Notice that if and end if are both considered statements and must be terminated with semico-
lons.

The expression is evaluated, and if it is a Boolean true, the body is performed. If it is a Bool-
ean false, the body is not performed. Any arithmetic expression may be used in this context.
A zero value is a Boolean false; a non-zero value is a Boolean true.

An alternative action can be specified with the if-else form:

if expression;

.. first body...
else;

...second body...
end if;

Notice that if, else, and end if are each considered statements and must be terminated with
semicolons.

The expression is evaluated, and if it is a Boolean frue, the first body is performed. If it is a
Boolean false, the second body is performed. Any arithmetic expression may be used in this
context. A zero value is a Boolean false; a non-zero value is a Boolean true.



Input and Output Statements

e Keyboard input it performed by the read statement. The syntax is:

read varref;

e When a read statement is performed, the program pauses and waits for the user to enter a
number on the keyboard. The varref is any scalar variable or subscripted array reference. No-
tice that only one variable reference is permitted on each read statement.

e Screen output is performed by the print statement. The syntax is:
print printlist;
e A printlist is a comma-delimited list of print items. A print item is one of:

e An expression. The value of the expression is written to the screen.

e A character string enclosed in double quotation marks. The characters in the string are
written to the screen. A string may include the double quotation mark itself as one of the
characters in the string. Use two adjacent double quotation marks inside a string, and in
their place on the screen only one double quotation mark will be displayed at run-time.

e An exclamation mark (!). A carriage return and line feed are performed on the screen.

For example:

print "Sum is ", Sum, !;
print "Mean is ", Sum/Count, !;
print "John said ""Hello"" to Mary.";

e The items in the print list are written to the screen in the same order in which they appear in
the statement. The print statement performs a carriage return only when the carriage return
item (!) appears in the print list.



File---—----- euclid.slic
Programmer--Bryan Crawley
Project----- Slic example

This program uses Euclid's Algorithm to compute and display the
greatest common divisor of two positive integers.

e R

main;

data:
integer: A, B, D, Temp, Asave, Bsave;

algorithm:
print !, !, " SLIC Demonstration", !;
print !, "This program uses Euclid's Algorithm to determine the greatest";
print !, "common divisor of two positive integers. It will prompt you to";
print !, "enter the two integers A and B, and will display the result on";
print !, "the screen. The program is written in SLIC, a new programming";
print !, "language designed and implemented at Georgetown College.";
print !;

print !, "Enter A: ";
read Asave;

print "Enter B: ";
read Bsave;

A := Asave;
B := Bsave;
while A<>B;
if A<B;
Temp := A;
A := B;
B := Temp;
end 1if;
D := A - B;
A := B;
B := D;

end while;
print !,"Greatest common divisor of ";
print Asave, " and ", Bsave, " is ", A, ".", !, I
exit;
end main;

10



File---—----- sort.slic
Programmer--Bryan Crawley
Project----- Slic example

This program uses a Selection Sort to sort a list of ten
integers into ascending order.

e R

main;

data:
integer: List[10]; # The list of integers.
integer: Size; # Number of entries in the list.
integer: Top, J; # Counters for counting loop.
integer: MaxLoc; # Index of largest value in list.
integer: Temp; # Used in exchanging array values.

algorithm:

Size := 10;

counting J upward 0 to Size-1;
print "Element #", J, ": ";
read List[J];

end counting;

print !;
counting Top downward Size-1 to 1;
MaxLoc := 0;

counting J upward 1 to Top;
if List[J] > List[MaxLoc];
MaxLoc := J;
end 1if;
end counting;
Temp := List[Top];
List[Top] := List[MaxLoc];
List[MaxLoc] := Temp;
end counting;

counting J upward 0 to Size-1;
print "Sorted #",J,": ",List[J],!;
end counting;
print !,"Finished",!;
exit;
end main;

11



